1. which statement about the pend	odic table is not	correct?			
A Elements in the same group B The elements are ordered by The elements are ordered by There is a repeating trend of	y increasing ato y increasing ato	mic mass. mic number.		the periods.	
Your answer					[1]
2. The table shows the melting poir	nts of some of th	ne elements in	Period 3 of th	e periodic table.	
Element	Al	Si	P ₄	S ₈	
Melting point / °C	660	1410	44	119	
					[6]

3. Chlorine has the electron configuration [Ne]3s²3p⁵.

Which statement(s) about chlorine is/are correct when it reacts in redox reactions?

- 1 It can gain one electron to form 1– ions.
- 2 It can lose its 3s² electrons to form 2+ ions.
- 3 It can lose its 3p⁵ electrons to form 5+ ions.
- **A** 1, 2 and 3
- B Only 1 and 2
- C Only 2 and 3
- **D** Only 1

Your answer	[1]
	b 4

4(a). This question is about periodicity and the reaction of some Group 2 metals.

Periodicity is the repeating trend in properties of elements across different periods in the periodic table.

i. Complete the table below with the electron configurations and blocks.

	Group 2	Group 17 (7)
Davied 2	Ве	F
Period 2	1s ²	1s ²
David d 2	Mg	CI
Period 3	1s ²	1s ²
Block		

		[3]
ii.	Use your answers to (i) to explain why electron configuration is an example of a periodic trend.	
		[2]

[1]

[2]

iii. Mg forms 2+ ions but C/ usually forms 1- ions in their reactions. Explain why.

[2]

ίV. Magnesium reacts with oxygen in the air.

Write the equation for this reaction.

(b). The graph shows the first ionisation energies for the elements Li to Be and for C to Na.

Complete the graph by adding points for the missing values of B and Mg. i.

Write an equation, including state symbols, to represent the **second** ionisation energy of B. ii.

[2]

.....[1]

5(a). This question is about the first 36 elements in the periodic table:

н																	Не
Li	Be											В	С	N	0	F	Ne
Na	Mg											Αl	Si	Р	s	CI	Ar
к	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr

From these 36 elements **only**, write the symbol for the element(s) that fit each description.

The element in Period 2 with the successive ionisation energies shown below.

Ionisation number	1st	2nd	3rd	4th	5th	6th	7th	8th
Ionisation energy / kJ mol ⁻¹	1000	2251	3361	4564	7012	8496	27 107	31 671

(b). An element that is a solid at RTP with a simple molecular lattice structure.

[1]

(c). The element in Period 3 that exists in the solid state as a network of atoms bonded by strong covalent bonds.

6. This question is about energy changes.

The first and second ionisation energies of magnesium, Mg, and strontium, Sr, in Group 2 are given in the table below.

Element	First ionisation energy / kJ mol ⁻¹	Second ionisation energy / kJ mol ⁻				
Mg	+738	+1451				
Sr	+550	+1064				

hich ele	ement has t	he largest th	ird ionisatio	n energy?				
Li F								
Ne								
Na								
r answe	r 🗍							[1]
								[1]
		n energies, i	n kJ mol ^{−1} , c	of an elemen	t in Period 3	3 of the perio	odic table ar	[1] e shown belo
		n energies, i 3rd	n kJ mol⁻¹, c 4th	of an elemen	t in Period 3	of the perio	odic table ar	

[4]

9. The table below shows melting points and electrical conductivities of some elements in Period 3 and compounds they form.

Substance	Magnesium sulfide, MgS	Aluminium, A <i>l</i>	Silicon, Si	Phosphorus trichloride, PC <i>I</i> ₃
Melting point / °C	2000	660	1414	-94
Electrical conductivity		Good	Poor	
Type of lattice structure	Giant			

i.	Complete the	e table above to	show the	type of	flattice s	structure o	f each substance	e.
----	--------------	------------------	----------	---------	------------	-------------	------------------	----

ii. I	Expl	lain	the	foll	OW	⁄ing	١
-------	------	------	-----	------	----	------	---

- MgS has a higher melting point than PCI₃.
- . Al has a greater electrical conductivity than Si.

Melting points	
0 1 0 00	
Conductivities	
	[4]
	141

Explain your answer.

3.1.1 P	eriodicity	PnysicsAndiviatns i utor.com			
10. Th	nis question is about titanium (atomic number 22) and its compounds.				
An or	e of titanium contains impure TiO ₂ .				
Titani	um is manufactured from TiO ₂ in a two-stage process.				
Stage	e 1 $TiO_2 + 2C + 2CI_2 \rightarrow TiCI_4 + 2CO$	Reaction 1.1			
Stage	2 TiC/ ₄ + 4Na → Ti + 4NaC/	Reaction 1.2			
i.	The common name for TiO ₂ is titanium dioxide.				
	What is the systematic name of TiO ₂ ?				
		[1]			
ii.	In Reaction 1.2 , the percentage yield of titanium from TiCl ₄ is 72.0%.				
	Calculate the minimum mass, in kg, of sodium that is needed to produce 1.00 kg of titanium.				
	Give your answer to 3 significant figures.				
	mass of sodium =	kg [4]			
iii.	Reaction 1.2 produces a mixture of titanium and sodium chloride.				
	Suggest how titanium could be separated from this mixture at room temperature	re.			

[2]

11. Describe the structure and bonding and electrical conductivity of calcium in the solid state. You may wish to include a labelled diagram in your answer.									
_									
_									
				[4]					
		·		L:3					
12.	. Which element has the	owest melting point?							
Α	S								
В	P								
С	Cl								
D	Ar								
Yo	ur answer			[1]					
13.	The first four ionisation e	energies of a Period 3 elen	nent X are shown in the tal	ole.					
		Ionisation en	ergy/kJ mol ⁻¹						
	1st	2nd	3rd	4th					
	738	1451	7733	10 541					
		.1							

Element **X** is reacted with chlorine.

What is the formula of the chloride formed?

A XC/

B XCI2

C XC/3

D XCI4

Your answer [1]

14. Which substance has a giant covalent lattice structure in its solid state?

- **A** potassium
- **B** silicon
- **C** sodium chloride
- **D** water

Your answer [1]

15(a). The graph shows the first ionisation energies for elements from helium, He, to boron, B, in the periodic table.

Complete the graph for C, N, O, F and Ne.

[2]

(b). Estimate the energy required to form **one** Li⁺(g) ion from one Li(g) atom.

Give your answer in kJ, in standard form, and to two significant figures.

energy = kJ [1]

(c). E	explain why the first ionisation energies of He and Be are both higher than the first ionisation energ	y of Li.	
Expla	anation for He:		
Expla	anation for Be:		
		[4]	
(d). E	Explain why the first ionisation energy of Be is higher than the first ionisation energy of B.		
			_
			2
	his guardien is about come Croup 2 slamounts and their company		_ ,
	his question is about some Group 2 elements and their compounds.		
	itium and calcium both react with water.		
i.	Write an equation for the reaction of strontium with water.		
		[1
ii.	Using oxidation numbers, explain why the reaction of strontium with water is a redox reaction.		
			_
			2
iii.	Explain why calcium reacts more slowly with water than strontium does.	-	=,
			_
			_
			_
		Γ'	31